
18.100A PSET 1 SOLUTIONS

DAVID CORWIN

Problem 1

Let an = (−1)n. First, we note that for all n, we either have an = 1 or
an = −1. In either case, we have −1 ≤ an ≤ 1. Therefore, {an} is bounded
below by −1 and above by 1, i.e., it is bounded.

For the next part, we present two possible solutions:

Solution 1. Next, let us suppose that the sequence has a limit, call it L.
Then for some N > 0, we have |an − L| < 1/2 whenever n > N .

But for any such n, we can always find an even n such that n > N . Then
for such an n, we have an = 1, so |L − 1| < 1/2, hence L > 1/2. Similarly,
we can always find odd n such that n > N , so an = −1 for such an n, and
so |(−1)− L| < 1/2, so L < −1/2. But this contradicts L > 1/2, so a limit
cannot exist.

Solution 2. We consider the subsequences {a2n} and {a2n+1}. By the Sub-
sequence Theorem, if the sequence {an} has a limit, then any subsequence
has the same limit. But the first subsequence has limit 1, and the second
has limit −1, a contradiction, so the original sequence cannot have a limit.

Comments.

• Some people’s explanations were overly complicated
• The key is to choose epsilon less than 1 (or realize that any such

epsilon works).
• A lot of people bounded it by ±2 or even ±10. That might be good

for intuition, but you only need ±1.
• Some people said “choose some n even” or “choose some n odd” and

that the limit is then 1 (or −1). But a limit isn’t about a single
1
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value (“some” n), rather it’s about what happens as n (say, even)
gets larger and larger.
• An important point people weren’t making explicit: you need to

note that there are *arbitrarily large* even and odd n.

Problem 2

Letting an =
n− 1

3n
, we have

an+1 − an =
n

3n+1
− n− 1

3n

=
n

3n+1
− 3n− 3

3n+1

=
n− (3n− 3)

3n+1

=
−2n+ 3

3n+1
.

For n ≥ 2 (in fact any n > 3/2), we have −2n + 3 < 0, and, noting that
3n+1 > 0, this implies that an+1 − an < 0. But this implies that an+1 < an,
which, by definition, says that the sequence is decreasing.

Comments.

• Some people are starting with the conclusion and then getting to an
inequality that’s true. If you do that, you need to explain that the
steps are reversible!

Problem 3

To show that the sequence is bounded above, note that for n ≥ 1, we
have an = −a2n−1, which is ≤ 0. Noting that a0 < 0, we have an ≤ 0 for all
n ≥ 0, so the sequence is bounded above by 0.

To show that the sequence is increasing, we need to know that an ≥ −1
for all n. Such a property for an depends on the same property for an−1, so
we need to use induction (notice how, in the previous paragraph, −an−1 is
≥ 0 regardless of the value of an−1, so we do not need induction).
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For n = 0, we have a0 ≥ −1. For some n ≥ 0, suppose an ≥ −1. We
also know that an < 0 (by the first paragraph), so a2n = (−an)2 is between
0 and 1, meaning that an+1 = −a2n is ≥ −1, as desired. By induction, we
have an ≥ −1 for all n.

We have now shown that −1 ≤ an < 0 for all n ≥ 0. It follows that −an
is positive, so we may multiple both sides of the inequality −1 ≤ an to get
the inequality an ≤ −a2n. But this says that an ≤ an+1, which implies that
the sequence is increasing.

Comments.

• It’s important to understand where induction is needed and where
it isn’t needed. A lot of people used induction on the wrong part.
• As an alternative proof, one can show an = −a2n0 for all n and pro-

ceed directly (i.e., without even using induction). (Though techni-
cally, proving that formula involves induction, albeit a very intuitive
example of induction.)

Problem 4

We first note that an > 0 for all n, as the numerator and denominator
are clearly positive. In particular, this implies that the sequence is bounded
below.

Next, we note that

an+1

an
=

22n+2((n+1)!)2

(2n+3)!

22n(n!)2

(2n+1)!

=

22n+2((n+1)!)2

22n(n!)2

(2n+3)!
(2n+1)!

=
4(n+ 1)2

(2n+ 3)(2n+ 2)

=
2n+ 2

2n+ 3
< 1.
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As everything is positive, this implies that an+1 < an, i.e., the sequence
is decreasing. But a bounded below decreasing sequence always has a limit
by the Completeness Theorem, so it has a limit.

Comments.

• One can also show that the limit is 0 by noting that a0 = 1, so

an =
n∏

k=1

2k

2k + 1
=

n∏
k=1

1

1 + 1
2k

<
1∑n

k=1
1
2k

, but the bottom diverges

to ∞, so the limit approaches 0.

Problem 5

Solution 1. We let Hn =

n∑
k=1

1

k
denote the Harmonic series. We note that

an = 1 +
1

3
+

1

5
+ · · ·+ 1

2n− 1
>

1

2
+

1

4
+

1

6
+ · · ·+ 1

2n− 2
=

1

2
Hn−1. But

we know that the Harmonic series grows arbitrarily large, hence so does an.
(More precisely, if an < B for some B and all n, the above would imply that
Hn−1 < 2B for all n, contradicting the fact that Hn is unbounded.)

Solution 2. We note that an is an upper Riemann sum for the integral∫ 2n+1

1

1

2x− 1
dx. The antiderivative of the integrand is

log(2x− 1)

2
, so the

integral evaluates to
log(2(n+ 1)− 1)

2
− log(2− 1)

2
=

1

2
log(2n + 1). But

the log function is unbounded so this approaches +∞, hence so does an.

Comments.

• Be careful, an is the sum of n terms, so you need to compare it to
an integral from 1 to n+ 1, not from 1 to n

Problem 6

There is a counterexample. We choose any sequences an and bn such that

each is increasing and always negative. For example, let an = bn = − 1

n
.

Then |an| is decreasing, hence so is a2n, and the same is true for b2n, so
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a2n + b2n is also decreasing. (In that example, we have a2n + b2n =
2

n2
, which

is decreasing.)

Comments.

• Technically, you can find something where a2n + b2n increases for suf-
ficiently large n, but fails in general due to behavior for small values
of n. But it’s more interesting to note that there’s a counterexam-
ple even if you write “increasing for sufficiently large n” instead of
“increasing.”
• Note that the word ‘counterexample’ has the word ‘example’ in it,

and although I didn’t take off points for this, it’s good to include an
example.

Problem 7

We first prove that for all n, we have 0 ≤ an <
2√
3

. We do this by

induction. For n = 0, this is automatically true. Now assume that 0 ≤ an <
2√
3

for some n.

Then an+1 is a positive square root, so it is clearly ≥ 0. We also know
a2n < 4/3, so a2n+1 = 1 + a2n/4 < 1 + (4/3)/4 = 1 + 1/3 = 4/3, which implies

that an+1 <
2√
3

.

Comments.

• When proving this by induction, it’s important to be clear about
*what statement* you’re trying to prove by induction. This was
confusing in a lot of the problem sets.
• As an alternative proof, one can actually find a closed form for an.

More specifically, one has a2n =
a20
4n

+
n−1∑
k=1

(
1

4

)k−1
=
a20
4n

+
4−

(
1
4

)n−1
3

,

so the limit of an is
2√
3

.
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Problem 8

(b). We have

∣∣∣∣(2n− 1

n+ 2

)
− 2

∣∣∣∣ =

∣∣∣∣ −5

n+ 2

∣∣∣∣
=

5

n+ 2

<
5

n

For any ε > 0, this is less than ε for n >
5

ε
. This implies that lim

n→∞

2n− 1

n+ 2
=

2.

(c). As n > 0, we have

∣∣∣∣ n

n2 + 3n+ 1

∣∣∣∣ =
n

n2 + 3n+ 1

<
n

n2

=
1

n

For any ε > 0, this is less than ε for n >
1

ε
, so lim

n→∞

n

n2 + 3n+ 1
= 0

(e). We note that (
√
n2 + 2 − n)(

√
n2 + 2 + n) = n2 + 2 − n2 = 2, so√

n2 + 2 − n =
2√

n2 + 2 + n
. For n > 0, we have

√
n2 + 2 is well defined

and ≥ 0, so

|
√
n2 + 2− n| =

∣∣∣∣ 2√
n2 + 2 + n

∣∣∣∣
=

2√
n2 + 2 + n

<
2

n
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For any ε > 0, this is less than ε for n >
2

ε
. This implies that lim

n→∞

√
n2 + 2−

n = 0.

Problem 9

(a). We first note that

an − an−1 =

(
1

n+ 1
+ · · ·+ 1

2n

)
−
(

1

n
+ · · ·+ 1

2n− 2

)
=

1

2n
+

1

2n− 1
− 1

n

=
1

2n− 1
− 1

2n

=
2n

2n(2n− 1)
− 2n− 1

2n(2n− 1)

=
1

2n(2n− 1)

> 0

In particular, we find that {an} is increasing for n ≥ 1.

Furthermore, we note that

an =
2n∑

k=n+1

1

k
<

2n∑
k=n+1

1

n+ 1
=

n

n+ 1
< 1,

so an is bounded above. By the Completeness Theorem, it follows that an
has a limit.

(b). In the K-ε principle, K must be a constant. But this proposed “proof”
is taking K = n, which is not constant.

Problem 10

We will actually do both cases at once. Let M be a positive integer greater

than 2|r|. We note that for n ≥M , we have
|r|
n
<

1

2
. Therefore, for n > M ,

we have
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|an| =
|r|n∏n
k=1 k

= |aM |
|r|n−M∏n
k=M+1 k

= |aM |
n∏

k=M+1

|r|
k

< |aM |
n∏

k=M+1

1

2

= |aM |
(

1

2

)n−M

As lim
n→∞

(
1

2

)n−M
= 0, we know that for any ε > 0, that |an| = |aM |

(
1

2

)n−M
<

|aM |ε for n >> 1. By the K-ε principle, it follows that lim
n→∞

an = 0.
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