18.100A PSET 1 SOLUTIONS

DAVID CORWIN

Problem 1

Let $a_{n}=(-1)^{n}$. First, we note that for all n, we either have $a_{n}=1$ or $a_{n}=-1$. In either case, we have $-1 \leq a_{n} \leq 1$. Therefore, $\left\{a_{n}\right\}$ is bounded below by -1 and above by 1 , i.e., it is bounded.

For the next part, we present two possible solutions:

Solution 1. Next, let us suppose that the sequence has a limit, call it L. Then for some $N>0$, we have $\left|a_{n}-L\right|<1 / 2$ whenever $n>N$.

But for any such n, we can always find an even n such that $n>N$. Then for such an n, we have $a_{n}=1$, so $|L-1|<1 / 2$, hence $L>1 / 2$. Similarly, we can always find odd n such that $n>N$, so $a_{n}=-1$ for such an n, and so $|(-1)-L|<1 / 2$, so $L<-1 / 2$. But this contradicts $L>1 / 2$, so a limit cannot exist.

Solution 2. We consider the subsequences $\left\{a_{2 n}\right\}$ and $\left\{a_{2 n+1}\right\}$. By the Subsequence Theorem, if the sequence $\left\{a_{n}\right\}$ has a limit, then any subsequence has the same limit. But the first subsequence has limit 1, and the second has limit -1 , a contradiction, so the original sequence cannot have a limit.

Comments.

- Some people's explanations were overly complicated
- The key is to choose epsilon less than 1 (or realize that any such epsilon works).
- A lot of people bounded it by ± 2 or even ± 10. That might be good for intuition, but you only need ± 1.
- Some people said "choose some n even" or "choose some n odd" and that the limit is then 1 (or -1). But a limit isn't about a single
value ("some" n), rather it's about what happens as n (say, even) gets larger and larger.
- An important point people weren't making explicit: you need to note that there are *arbitrarily large* even and odd n.

Problem 2

Letting $a_{n}=\frac{n-1}{3^{n}}$, we have

$$
\begin{aligned}
a_{n+1}-a_{n} & =\frac{n}{3^{n+1}}-\frac{n-1}{3^{n}} \\
& =\frac{n}{3^{n+1}}-\frac{3 n-3}{3^{n+1}} \\
& =\frac{n-(3 n-3)}{3^{n+1}} \\
& =\frac{-2 n+3}{3^{n+1}} .
\end{aligned}
$$

For $n \geq 2$ (in fact any $n>3 / 2$), we have $-2 n+3<0$, and, noting that $3^{n+1}>0$, this implies that $a_{n+1}-a_{n}<0$. But this implies that $a_{n+1}<a_{n}$, which, by definition, says that the sequence is decreasing.

Comments.

- Some people are starting with the conclusion and then getting to an inequality that's true. If you do that, you need to explain that the steps are reversible!

Problem 3

To show that the sequence is bounded above, note that for $n \geq 1$, we have $a_{n}=-a_{n-1}^{2}$, which is ≤ 0. Noting that $a_{0}<0$, we have $a_{n} \leq 0$ for all $n \geq 0$, so the sequence is bounded above by 0 .

To show that the sequence is increasing, we need to know that $a_{n} \geq-1$ for all n. Such a property for a_{n} depends on the same property for a_{n-1}, so we need to use induction (notice how, in the previous paragraph, $-a_{n-1}$ is ≥ 0 regardless of the value of a_{n-1}, so we do not need induction).

For $n=0$, we have $a_{0} \geq-1$. For some $n \geq 0$, suppose $a_{n} \geq-1$. We also know that $a_{n}<0$ (by the first paragraph), so $a_{n}^{2}=\left(-a_{n}\right)^{2}$ is between 0 and 1 , meaning that $a_{n+1}=-a_{n}^{2}$ is ≥-1, as desired. By induction, we have $a_{n} \geq-1$ for all n.

We have now shown that $-1 \leq a_{n}<0$ for all $n \geq 0$. It follows that $-a_{n}$ is positive, so we may multiple both sides of the inequality $-1 \leq a_{n}$ to get the inequality $a_{n} \leq-a_{n}^{2}$. But this says that $a_{n} \leq a_{n+1}$, which implies that the sequence is increasing.

Comments.

- It's important to understand where induction is needed and where it isn't needed. A lot of people used induction on the wrong part.
- As an alternative proof, one can show $a_{n}=-a_{0}^{2^{n}}$ for all n and proceed directly (i.e., without even using induction). (Though technically, proving that formula involves induction, albeit a very intuitive example of induction.)

Problem 4

We first note that $a_{n}>0$ for all n, as the numerator and denominator are clearly positive. In particular, this implies that the sequence is bounded below.

Next, we note that

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{\frac{2^{2 n+2}((n+1)!)^{2}}{(2 n+3)!}}{\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}} \\
& =\frac{\frac{2^{2 n+2}((n+1)!)^{2}}{2^{2 n}(n!)^{2}}}{\frac{(2 n+3)!}{(2 n+1)!}} \\
& =\frac{4(n+1)^{2}}{(2 n+3)(2 n+2)} \\
& =\frac{2 n+2}{2 n+3} \\
& <1 .
\end{aligned}
$$

As everything is positive, this implies that $a_{n+1}<a_{n}$, i.e., the sequence is decreasing. But a bounded below decreasing sequence always has a limit by the Completeness Theorem, so it has a limit.

Comments.

- One can also show that the limit is 0 by noting that $a_{0}=1$, so $a_{n}=\prod_{k=1}^{n} \frac{2 k}{2 k+1}=\prod_{k=1}^{n} \frac{1}{1+\frac{1}{2 k}}<\frac{1}{\sum_{k=1}^{n} \frac{1}{2 k}}$, but the bottom diverges to ∞, so the limit approaches 0 .

Problem 5

Solution 1. We let $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ denote the Harmonic series. We note that $a_{n}=1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}>\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n-2}=\frac{1}{2} H_{n-1}$. But we know that the Harmonic series grows arbitrarily large, hence so does a_{n}. (More precisely, if $a_{n}<B$ for some B and all n, the above would imply that $H_{n-1}<2 B$ for all n, contradicting the fact that H_{n} is unbounded.)

Solution 2. We note that a_{n} is an upper Riemann sum for the integral $\int_{1}^{2 n+1} \frac{1}{2 x-1} d x$. The antiderivative of the integrand is $\frac{\log (2 x-1)}{2}$, so the integral evaluates to $\frac{\log (2(n+1)-1)}{2}-\frac{\log (2-1)}{2}=\frac{1}{2} \log (2 n+1)$. But the \log function is unbounded so this approaches $+\infty$, hence so does a_{n}.

Comments.

- Be careful, a_{n} is the sum of n terms, so you need to compare it to an integral from 1 to $n+1$, not from 1 to n

Problem 6

There is a counterexample. We choose any sequences a_{n} and b_{n} such that each is increasing and always negative. For example, let $a_{n}=b_{n}=-\frac{1}{n}$. Then $\left|a_{n}\right|$ is decreasing, hence so is a_{n}^{2}, and the same is true for b_{n}^{2}, so
$a_{n}^{2}+b_{n}^{2}$ is also decreasing. (In that example, we have $a_{n}^{2}+b_{n}^{2}=\frac{2}{n^{2}}$, which is decreasing.)

Comments.

- Technically, you can find something where $a_{n}^{2}+b_{n}^{2}$ increases for sufficiently large n, but fails in general due to behavior for small values of n. But it's more interesting to note that there's a counterexample even if you write "increasing for sufficiently large n " instead of "increasing."
- Note that the word 'counterexample' has the word 'example' in it, and although I didn't take off points for this, it's good to include an example.

Problem 7

We first prove that for all n, we have $0 \leq a_{n}<\frac{2}{\sqrt{3}}$. We do this by induction. For $n=0$, this is automatically true. Now assume that $0 \leq a_{n}<$ $\frac{2}{\sqrt{3}}$ for some n.

Then a_{n+1} is a positive square root, so it is clearly ≥ 0. We also know $a_{n}^{2}<4 / 3$, so $a_{n+1}^{2}=1+a_{n}^{2} / 4<1+(4 / 3) / 4=1+1 / 3=4 / 3$, which implies that $a_{n+1}<\frac{2}{\sqrt{3}}$.

Comments.

- When proving this by induction, it's important to be clear about *what statement* you're trying to prove by induction. This was confusing in a lot of the problem sets.
- As an alternative proof, one can actually find a closed form for a_{n}. More specifically, one has $a_{n}^{2}=\frac{a_{0}^{2}}{4^{n}}+\sum_{k=1}^{n-1}\left(\frac{1}{4}\right)^{k-1}=\frac{a_{0}^{2}}{4^{n}}+\frac{4-\left(\frac{1}{4}\right)^{n-1}}{3}$, so the limit of a_{n} is $\frac{2}{\sqrt{3}}$.

PROBLEM 8

(b). We have

$$
\begin{aligned}
\left|\left(\frac{2 n-1}{n+2}\right)-2\right| & =\left|\frac{-5}{n+2}\right| \\
& =\frac{5}{n+2} \\
& <\frac{5}{n}
\end{aligned}
$$

For any $\epsilon>0$, this is less than ϵ for $n>\frac{5}{\epsilon}$. This implies that $\lim _{n \rightarrow \infty} \frac{2 n-1}{n+2}=$ 2.
(c). As $n>0$, we have

$$
\begin{aligned}
\left|\frac{n}{n^{2}+3 n+1}\right| & =\frac{n}{n^{2}+3 n+1} \\
& <\frac{n}{n^{2}} \\
& =\frac{1}{n}
\end{aligned}
$$

For any $\epsilon>0$, this is less than ϵ for $n>\frac{1}{\epsilon}$, so $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+3 n+1}=0$
(e). We note that $\left(\sqrt{n^{2}+2}-n\right)\left(\sqrt{n^{2}+2}+n\right)=n^{2}+2-n^{2}=2$, so $\sqrt{n^{2}+2}-n=\frac{2}{\sqrt{n^{2}+2}+n}$. For $n>0$, we have $\sqrt{n^{2}+2}$ is well defined and ≥ 0, so

$$
\begin{aligned}
\left|\sqrt{n^{2}+2}-n\right| & =\left|\frac{2}{\sqrt{n^{2}+2}+n}\right| \\
& =\frac{2}{\sqrt{n^{2}+2}+n} \\
& <\frac{2}{n}
\end{aligned}
$$

For any $\epsilon>0$, this is less than ϵ for $n>\frac{2}{\epsilon}$. This implies that $\lim _{n \rightarrow \infty} \sqrt{n^{2}+2}-$ $n=0$.

PROBLEM 9

(a). We first note that

$$
\begin{aligned}
a_{n}-a_{n-1} & =\left(\frac{1}{n+1}+\cdots+\frac{1}{2 n}\right)-\left(\frac{1}{n}+\cdots+\frac{1}{2 n-2}\right) \\
& =\frac{1}{2 n}+\frac{1}{2 n-1}-\frac{1}{n} \\
& =\frac{1}{2 n-1}-\frac{1}{2 n} \\
& =\frac{2 n}{2 n(2 n-1)}-\frac{2 n-1}{2 n(2 n-1)} \\
& =\frac{1}{2 n(2 n-1)} \\
& >0
\end{aligned}
$$

In particular, we find that $\left\{a_{n}\right\}$ is increasing for $n \geq 1$.

Furthermore, we note that

$$
a_{n}=\sum_{k=n+1}^{2 n} \frac{1}{k}<\sum_{k=n+1}^{2 n} \frac{1}{n+1}=\frac{n}{n+1}<1
$$

so a_{n} is bounded above. By the Completeness Theorem, it follows that a_{n} has a limit.
(b). In the $K-\epsilon$ principle, K must be a constant. But this proposed "proof" is taking $K=n$, which is not constant.

Problem 10

We will actually do both cases at once. Let M be a positive integer greater than $2|r|$. We note that for $n \geq M$, we have $\frac{|r|}{n}<\frac{1}{2}$. Therefore, for $n>M$, we have

$$
\begin{aligned}
\left|a_{n}\right| & =\frac{|r|^{n}}{\prod_{k=1}^{n} k} \\
& =\left|a_{M}\right| \frac{|r|^{n-M}}{\prod_{k=M+1}^{n} k} \\
& =\left|a_{M}\right| \prod_{k=M+1}^{n} \frac{|r|}{k} \\
& <\left|a_{M}\right| \prod_{k=M+1}^{n} \frac{1}{2} \\
& =\left|a_{M}\right|\left(\frac{1}{2}\right)^{n-M}
\end{aligned}
$$

As $\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n-M}=0$, we know that for any $\epsilon>0$, that $\left|a_{n}\right|=\left|a_{M}\right|\left(\frac{1}{2}\right)^{n-M}<$ $\left|a_{M}\right| \epsilon$ for $n \gg 1$. By the $K-\epsilon$ principle, it follows that $\lim _{n \rightarrow \infty} a_{n}=0$.

